

DCO2520

DATA STRUCTURES AND ALGORITHMS

(CHAPTER 5)

BY

PATRICK WONG

�
Searching

.	retrieve some particular piece or pieces of information from a large amount previously stored information

.	a table of records in which a key is used from retrieval is often called a search table of dictionary

.	organization of this table is not mentioned because a table is often designed with a specific search in mind

�
.	Internal searches : entire table is constantly in main 	memory

.	external searches : most of the table is kept in auxiliary storage.

�
Sequential Search

-	simplest form of searching

-	applicable to table organized either as array or as a linked list

-	no particular sequence of order

Algorithm :

1. for i from 0 to n

2.	if key = k(i)

3.		return i

4. return -1

�
Efficiency of Sequential Search

.	no. of comparisons depends on where the record with the argument key appears in the table

.	in O(n) on the average since it will take (n+1)/2 comparisons

.	In usual case, some arguments are presented to the search more often than others

Eg. records of final year student who is applying for 			transcripts are more likely to be called.

�
Efficiency of Sequential Search

1.	If knowledge on the relative frequency of access for various records is available, substantial effort can be saved by placing the most frequently accessed records in the front

2.	If we only know that some records are accessed more often than other, we can apply a self-organizing approach: whenever a record is accessed, move it to the beginning of the list

Disadvantage : incur extra cost on modification of 										pointers

�
Binary Search

Given :	n records are sorted and put into an array

				Let say we need to retrieve record with key v,

Algorithm:

1.	compare v with the element at the middle position of the array

	

	middle position = (r-1)/2

2.	if v is smaller, then search the first half of the table

3. otherwise, search the second half

�
Interpolation Search

.	an improvement to Binary Search

.	instead of dividing the array into half, it takes into account of the well distributed keys

Algorithm :

1.	compare v with the element at the MID position of the array

	MID=low +		(high-low) * (v-k[low])

 							 			(k[high]-k[low])

2.	if v is smaller, then search the first partition of the table

3.	otherwise, search the second partition

		 									 DCO2520 DATA STRUCTURES & ALGORITHMS

		 	

5.� PAGE �8�

		 									 DCO2520 DATA STRUCTURES & ALGORITHMS

		 	

5.� PAGE �1�

